Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(3): e0299809, 2024.
Article in English | MEDLINE | ID: mdl-38466683

ABSTRACT

For deep partial-thickness burns no consensus on the optimal treatment has been reached due to conflicting study outcomes with low quality evidence. Treatment options in high- and middle-income countries include conservative treatment with delayed excision and grafting if needed; and early excision and grafting. The majority of timing of surgery studies focus on survival rather than on quality of life. This study protocol describes a study that aims to compare long-term scar quality, clinical outcomes, and patient-reported outcomes between the treatment options. A multicentre prospective study will be conducted in the three Dutch burn centres (Rotterdam, Beverwijk, and Groningen). All adult patients with acute deep-partial thickness burns, based on healing potential with Laser Doppler Imaging, are eligible for inclusion. During a nine-month baseline period, standard practice will be monitored. This includes conservative treatment with dressings and topical agents, and excision and grafting of residual defects if needed 14-21 days post-burn. The subsequent nine months, early surgery is advocated, involving excision and grafting in the first week to ten days post-burn. The primary outcome compared between the two groups is long-term scar quality assessed by the Patient and Observer Scar Assessment Scale 3.0 twelve months after discharge. Secondary outcomes include clinical outcomes and patient-reported outcomes like quality of life and return to work. The aim of the study is to assess long-term scar quality in deep partial-thickness burns after conservative treatment with delayed excision and grafting if needed, compared to early excision and grafting. Adding to the ongoing debate on the optimal treatment of these burns. The broad range of studied outcomes will be used for the development of a decision aid for deep partial-thickness burns, to fully inform patients at the point of consent to surgery and support optimal person-centred care.


Subject(s)
Cicatrix , Quality of Life , Adult , Humans , Cicatrix/pathology , Prospective Studies , Wound Healing , Skin Transplantation
2.
ERJ Open Res ; 10(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38375427

ABSTRACT

Background: Distinguishing asthma and COPD can pose challenges in clinical practice. Increased group 1 innate lymphoid cells (ILC1s) have been found in the lungs and peripheral blood of COPD patients, while asthma is associated with elevated levels of ILC2s. However, it is unclear whether the inflammatory characteristics of ILC1s and ILC2s differ between COPD and asthma. This study aims to compare peripheral blood ILC subsets and their expression of inflammatory markers in COPD patients, asthma patients and controls. Methods: The study utilised multi-colour flow cytometry to analyse peripheral blood ILC populations in clinically stable COPD patients (n=38), asthma patients (n=37), and smoking (n=19) and non-smoking (n=16) controls. Results: Proportions of peripheral blood inflammatory CD4+ ILC1s were significantly higher in COPD patients than in asthma. Proportions of CD4- ILC1s were increased in COPD patients compared to asthma patients and smoking controls. Frequencies of CD117- ILC2s were significantly reduced in COPD patients compared with asthma patients. In contrast, the fraction of inflammatory CD45RO+ cells within the CD117- ILC2 population was significantly increased. Principal component analyses showed that combined features of the circulating ILC compartment separated COPD patients from asthma patients and both control groups. Conclusion: Our in-depth characterisation of ILC1 and ILC2 populations in peripheral blood revealed significant differences in their phenotypes between COPD and asthma patients and smoking or non-smoking controls. These findings suggest a role for both ILC subsets in COPD disease pathology, independent of smoking history, and may have implications for patient stratification and therapy development.

3.
J Autoimmun ; : 103120, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37863732

ABSTRACT

RATIONALE: Disease course in sarcoidosis is highly variable. Bronchoalveolar lavage fluid and mediastinal lymph nodes show accumulation of activated T cells with a T-helper (Th)17.1 signature, which correlates with non-resolving sarcoidosis. We hypothesize that the peripheral blood (PB) T cell phenotype may correlate with outcome. OBJECTIVES: To compare frequencies, phenotypes and function of circulating T cell populations in sarcoidosis patients with healthy controls (HCs) and correlate these parameters with outcome. METHODS: We used multi-color flow cytometry to quantify activation marker expression on PB T cell subsets in treatment-naïve patients and HCs. The disease course was determined after 2-year follow-up. Cytokine production was measured after T cell stimulation in vitro. MEASUREMENTS AND MAIN RESULTS: We observed significant differences between patients and HCs in several T cell populations, including CD8+ and CD4+ T cells, Th1/Th17 subsets, CD4+ T memory stem cells, regulatory T cells (Tregs) and γδ T cells. Decreased frequencies of CD4+ T cells and increased frequencies of Tregs and CD8+ γδ T cells correlated with worse outcome. Naïve CD4+ T cells displayed an activated phenotype with increased CD25 expression in patients with active chronic disease at 2-year follow-up. A distinctive Treg phenotype with increased expression of CD25, CTLA4, CD69, PD-1 and CD95 correlated with chronic sarcoidosis. Upon stimulation, both naïve and memory T cells displayed a different cytokine profile in sarcoidosis compared to HCs. CONCLUSIONS: Circulating T cell subpopulations of sarcoidosis patients display phenotypic abnormalities that correlate with disease outcome, supporting a critical role of aberrant T cell activation in sarcoidosis pathogenesis.

4.
Am J Physiol Heart Circ Physiol ; 323(5): H958-H974, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36149769

ABSTRACT

Mechanical forces are translated into biochemical stimuli by mechanotransduction channels, such as the mechanically activated cation channel Piezo2. Lung Piezo2 expression has recently been shown to be restricted to endothelial cells. Hence, we aimed to investigate the role of Piezo2 in regulation of pulmonary vascular function and structure, as well as its contribution to development of pulmonary arterial hypertension (PAH). The expression of Piezo2 was significantly reduced in pulmonary microvascular endothelial cells (MVECs) from patients with PAH, in lung tissue from mice with a Bmpr2+/R899X knock-in mutation commonly found in patients with pulmonary hypertension, and in lung tissue of monocrotaline (MCT) and sugen-hypoxia-induced PH (SuHx) PAH rat models, as well as from a swine model with pulmonary vein banding. In MVECs, Piezo2 expression was reduced in response to abnormal shear stress, hypoxia, and TGFß stimulation. Functional studies in MVECs exposed to shear stress illustrated that siRNA-mediated Piezo2 knockdown impaired endothelial alignment, calcium influx, phosphorylation of AKT, and nitric oxide production. In addition, siPiezo2 reduced the expression of the endothelial marker PECAM-1 and increased the expression of vascular smooth muscle markers ACTA2, SM22a, and calponin. Thus, Piezo2 acts as a mechanotransduction channel in pulmonary MVECs, stimulating shear-induced production of nitric oxide and is essentially involved in preventing endothelial to mesenchymal transition. Its blunted expression in pulmonary hypertension could impair the vasodilator capacity and stimulate vascular remodeling, indicating that Piezo2 might be an interesting therapeutic target to attenuate progression of the disease.NEW & NOTEWORTHY The mechanosensory ion channel Piezo2 is exclusively expressed in lung microvascular endothelial cells (MVECs). Patient MVECs as well as animal models of pulmonary (arterial) hypertension showed lower expression of Piezo2 in the lung. Mechanistically, Piezo2 is required for calcium influx and NO production in response to shear stress, whereas stimuli known to induce endothelial to mesenchymal transition (EndMT) reduce Piezo2 expression in MVECs, and Piezo2 knockdown induces a gene and protein expression pattern consistent with EndMT.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Rats , Mice , Animals , Swine , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Endothelial Cells/metabolism , Calcium/metabolism , Nitric Oxide/metabolism , Mechanotransduction, Cellular , Cells, Cultured , Pulmonary Arterial Hypertension/genetics , Lung/metabolism , Hypoxia , Pulmonary Artery , Disease Models, Animal , Ion Channels/genetics , Ion Channels/metabolism
5.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35742956

ABSTRACT

Pulmonary arterial hypertension (PAH) is rare disease that is categorized as idiopathic (IPAH) when no underlying cause can be identified. Lungs of most patients with IPAH contain increased numbers of T cells and dendritic cells (DCs), suggesting involvement of the immune system in its pathophysiology. However, our knowledge on circulating immune cells in IPAH is rather limited. We used flow cytometry to characterize peripheral blood DCs and T cells in treatment-naive IPAH patients, compared with connective-tissue disease-PAH (CTD-PAH) patients and healthy controls (HCs). At diagnosis, T-helper (Th) cells of IPAH patients were less capable of producing TNFα, IFNγ, IL-4 and IL-17 compared to HCs. IPAH patients showed a decreased frequency of Th2 cells and significantly enhanced expression of the CTLA4 checkpoint molecule in naive CD4+ T cells and both naive and memory CD8+ T cells. Frequencies and surface marker expression of circulating DCs and monocytes were essentially comparable between IPAH patients and HCs. Principal component analysis (PCA) separated IPAH patients-but not CTD-PAH patients-from HCs, based on T-cell cytokine profiles. At 1-year follow-up, the frequencies of IL-17+ production by memory CD4+ T cells were increased in IPAH patients and accompanied by increased proportions of Th17 and Tc17 cells, as well as decreased CTLA4 expression. Treatment-naive IPAH patients displayed a unique T-cell phenotype that was different from CTD-PAH patients and was characterized by reduced cytokine-producing capacity. These findings point to involvement of adaptive immune responses in IPAH, which may have an implication for the development of therapeutic interventions.


Subject(s)
Hypertension, Pulmonary , CD8-Positive T-Lymphocytes , CTLA-4 Antigen , Cytokines , Familial Primary Pulmonary Hypertension/etiology , Humans , Interleukin-17
6.
Front Immunol ; 13: 861450, 2022.
Article in English | MEDLINE | ID: mdl-35572511

ABSTRACT

Introduction: Previous studies have shown an increase of T cells and chemokines in vascular lesions of patients with chronic thromboembolic pulmonary hypertension (CTEPH). However, detailed characterization of these T cells is still lacking, nor have treatment effects been evaluated. Methods: We included 41 treatment-naive CTEPH patients at diagnosis, 22 patients at 1-year follow-up, and 17 healthy controls (HCs). Peripheral blood T cells were characterized by flow cytometry for subset distribution, cytokine expression and activation marker profile. We used multiplex immunofluorescence to identify CCR6+ T cells in endarterectomy tissue from 25 patients. Results: At diagnosis, proportions of CCR6+ CD4+ T cells were increased in CTEPH patients compared with HCs. Patients displayed a significantly reduced production capacity of several cytokines including TNFα, IFNγ, GM-CSF and IL-4 in CD4+ T cells, and TNFα and IFNγ in CD8+ T cells. CD4+ and CD8+ T cells showed increased expression of the immune checkpoint protein CTLA4. Multivariate analysis separated CTEPH patients from HCs, based on CCR6 and CTLA4 expression. At 1-year follow-up, proportions of CCR6+CD4+ T cells were further increased, IFNγ and IL-17 production capacity of CD4+ T cells was restored. In nearly all vascular lesions we found substantial numbers of CCR6+ T cells. Conclusion: The observed increase of CCR6+ T cells and modulation of the IFNγ and IL-17 production capacity of circulating CD4+ T cells at diagnosis and 1-year follow-up - together with the presence of CCR6+ T cells in vascular lesions - support the involvement of the Th17-associated CCR6+ T cell subset in CTEPH.


Subject(s)
Hypertension, Pulmonary , Receptors, CCR6 , CD8-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen , Cytokines , Humans , Interleukin-17/metabolism , Receptors, CCR6/metabolism , Tumor Necrosis Factor-alpha
7.
Thorax ; 76(12): 1209-1218, 2021 12.
Article in English | MEDLINE | ID: mdl-33963088

ABSTRACT

INTRODUCTION: Autoreactivity against pulmonary vascular structures is thought to be involved in idiopathic pulmonary arterial hypertension (IPAH), but the underlying mechanisms remain poorly understood. We hypothesised that aberrant B-cell activation contributes to IPAH aetiology. METHODS: Mice with enhanced B-cell activation due to B-cell-specific overexpression of the B-cell receptor (BCR) signalling molecule Bruton's tyrosine kinase (BTK) were subjected to lung injury and examined for several pulmonary hypertension (PH) indices. Peripheral blood lymphocytes from patients with IPAH (n=13), connective tissue disease-associated PAH (CTD-PAH, n=9), congenital heart disease PAH (n=7), interstitial lung disease associated PH (n=17) and healthy controls (n=19) were characterised by 14-colour flow cytometry. RESULTS: Following pulmonary injury, BTK-overexpressing mice showed prolonged activation of B cells and CXCR5+ follicular T-helper (Tfh) cells, as well as features of PH development. Patients with CTD-PAH and CHD-PAH displayed reduced proportions of circulating non-switched-memory B cells (p=0.03, p=0.02, respectively). Interestingly, we observed increased BTK protein expression in naive (p=0.007) and memory B-cell subsets of patients with IPAH and CTD-PAH. BTK was particularly high in patients with IPAH with circulating autoantibodies (p=0.045). IPAH patients had low frequencies of circulating CXCR5+ Tfh cells (p=0.005). Hereby, the increased BTK protein expression in B cells was associated with high proportions of Tfh17 (p=0.018) and Tfh17.1 (p=0.007) cells within the circulating Tfh population. CONCLUSIONS: Our study shows that pulmonary injury in combination with enhanced B-cell activation is sufficient to induce PH symptoms in mice. In parallel, immune homeostasis in patients with IPAH is compromised, as evidenced by increased BCR signalling and cTfh17 polarisation, indicating that adaptive immune activation contributes to IPAH disease induction or progression.


Subject(s)
Connective Tissue Diseases , Heart Defects, Congenital , Hypertension, Pulmonary , Animals , Familial Primary Pulmonary Hypertension , Homeostasis , Humans , Mice
8.
Int J Mol Sci ; 22(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578743

ABSTRACT

The pathogenesis of idiopathic pulmonary arterial hypertension (IPAH) is not fully understood, but evidence is accumulating that immune dysfunction plays a significant role. We previously reported that 31-week-old Tnfaip3DNGR1-KO mice develop pulmonary hypertension (PH) symptoms. These mice harbor a targeted deletion of the TNFα-induced protein-3 (Tnfaip3) gene, encoding the NF-κB regulatory protein A20, specifically in type I conventional dendritic cells (cDC1s). Here, we studied the involvement of dendritic cells (DCs) in PH in more detail. We found various immune cells, including DCs, in the hearts of Tnfaip3DNGR1-KO mice, particularly in the right ventricle (RV). Secondly, in young Tnfaip3DNGR1-KO mice, innate immune activation through airway exposure to toll-like receptor ligands essentially did not result in elevated RV pressures, although we did observe significant RV hypertrophy. Thirdly, PH symptoms in Tnfaip3DNGR1-KO mice were not enhanced by concomitant mutation of bone morphogenetic protein receptor type 2 (Bmpr2), which is the most affected gene in PAH patients. Finally, in human IPAH lung tissue we found co-localization of DCs and CD8+ T cells, representing the main cell type activated by cDC1s. Taken together, these findings support a unique role of cDC1s in PAH pathogenesis, independent of general immune activation or a mutation in the Bmpr2 gene.


Subject(s)
Dendritic Cells/immunology , Familial Primary Pulmonary Hypertension/immunology , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , Dendritic Cells/pathology , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/pathology , Gene Deletion , Heart Ventricles/immunology , Heart Ventricles/pathology , Humans , Immunity, Innate , Mice , Mutation , Toll-Like Receptor 4/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
9.
Allergy ; 75(10): 2587-2598, 2020 10.
Article in English | MEDLINE | ID: mdl-32329078

ABSTRACT

BACKGROUND: Conventional type 1 dendritic cells (cDC1s) control anti-viral and anti-tumor immunity by inducing antigen-specific cytotoxic CD8+ T-cell responses. Controversy exists whether cDC1s also control CD4+ T helper 2 (Th2) cell responses, since suppressive and activating roles have been reported. DC activation status, controlled by the transcription factor NF-κB, might determine the precise outcome of Th-cell differentiation upon encounter with cDC1s. To investigate the role of activated cDC1s in Th2-driven immune responses, pulmonary cDC1s were activated by targeted deletion of A20/Tnfaip3, a negative regulator of NF-κB signaling. METHODS: To target pulmonary cDC1s, Cd207 (Langerin)-mediated excision of A20/Tnfaip3 was used, generating Tnfaip3fl/fl xCd207+/cre (Tnfaip3Lg-KO ) mice. Mice were exposed to house dust mite (HDM) to provoke Th2-mediated immune responses. RESULTS: Mice harboring Tnfaip3-deficient cDC1s did not develop Th2-driven eosinophilic airway inflammation upon HDM exposure, but rather showed elevated numbers of IFNγ-expressing CD8+ T cells. In addition, Tnfaip3Lg-KO mice harbored increased numbers of IL-12-expressing cDC1s and elevated PD-L1 expression in all pulmonary DC subsets. Blocking either IL-12 or IFNγ in Tnfaip3Lg-KO mice restored Th2 responses, whereas administration of recombinant IFNγ during HDM sensitization in C57Bl/6 mice blocked Th2 development. CONCLUSIONS: These findings indicate that the activation status of cDC1s, shown by their specific expression of co-inhibitory molecules and cytokines, critically contributes to the development of Th2 cell-mediated disorders, most likely by influencing IFNγ production in CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Th2 Cells , Animals , Dendritic Cells , Inflammation , Lung , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
Front Immunol ; 10: 11, 2019.
Article in English | MEDLINE | ID: mdl-30723471

ABSTRACT

Pulmonary arterial hypertension (PAH) is a cardiopulmonary disease characterized by an incurable condition of the pulmonary vasculature, leading to increased pulmonary vascular resistance, elevated pulmonary arterial pressure resulting in progressive right ventricular failure and ultimately death. PAH has different underlying causes. In approximately 30-40% of the patients no underlying risk factor or cause can be found, so-called idiopathic PAH (IPAH). Patients with an autoimmune connective tissue disease (CTD) can develop PAH [CTD-associated PAH (CTD-PAH)], suggesting a prominent role of immune cell activation in PAH pathophysiology. This is further supported by the presence of tertiary lymphoid organs (TLOs) near pulmonary blood vessels in IPAH and CTD-PAH. TLOs consist of myeloid cells, like monocytes and dendritic cells (DCs), T-cells, and B-cells. Next to their T-cell activating function, DCs are crucial for the preservation of TLOs. Multiple DC subsets can be found in steady state, such as conventional DCs (cDCs), including type 1 cDCs (cDC1s), and type 2 cDCs (cDC2s), AXL+Siglec6+ DCs (AS-DCs), and plasmacytoid DCs (pDCs). Under inflammatory conditions monocytes can differentiate into monocyte-derived-DCs (mo-DCs). DC subset distribution and activation status play an important role in the pathobiology of autoimmune diseases and most likely in the development of IPAH and CTD-PAH. DCs can contribute to pathology by activating T-cells (production of pro-inflammatory cytokines) and B-cells (pathogenic antibody secretion). In this review we therefore describe the latest knowledge about DC subset distribution, activation status, and effector functions, and polymorphisms involved in DC function in IPAH and CTD-PAH to gain a better understanding of PAH pathology.


Subject(s)
Connective Tissue Diseases/complications , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Susceptibility , Familial Primary Pulmonary Hypertension/etiology , Familial Primary Pulmonary Hypertension/metabolism , Animals , Biomarkers , Genetic Predisposition to Disease , Humans , Lymphocyte Activation/immunology , Monocytes/immunology , Monocytes/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
11.
J Allergy Clin Immunol ; 141(5): 1620-1633.e12, 2018 05.
Article in English | MEDLINE | ID: mdl-28888782

ABSTRACT

BACKGROUND: It is currently unknown why allergen exposure or environmental triggers in patients with mild-to-moderate asthma result in TH2-mediated eosinophilic inflammation, whereas patients with severe asthma often present with TH17-mediated neutrophilic inflammation. The activation state of dendritic cells (DCs) is crucial for both TH2 and TH17 cell differentiation and is mediated through nuclear factor κB activation. Ablation of TNF-α-induced protein 3 (TNFAIP3), one of the crucial negative regulators of nuclear factor κB activation in myeloid cells and DCs, was shown to control DC activation. OBJECTIVE: In this study we investigated the precise role of TNFAIP3 in myeloid cells for the development of TH2- and TH17-cell mediated asthma. METHODS: We exposed mice with conditional deletion of the Tnfaip3 gene in either myeloid cells (by using the lysozyme M [LysM] promotor) or specifically in DCs (by using the Cd11c promotor) to acute and chronic house dust mite (HDM)-driven asthma models. RESULTS: We demonstrated that reduced Tnfaip3 gene expression in DCs in either Tnfaip3CD11c or Tnfaip3LysM mice dose-dependently controlled development of TH17-mediated neutrophilic severe asthma in both acute and chronic HDM-driven models, whereas wild-type mice had a purely TH2-mediated eosinophilic inflammation. TNFAIP3-deficient DCs induced HDM-specific TH17 cell differentiation through increased expression of the TH17-instructing cytokines IL-1ß, IL-6, and IL-23, whereas HDM-specific TH2 cell differentiation was hampered by increased IL-12 and IL-6 production. CONCLUSIONS: These data show that the extent of TNFAIP3 expression in DCs controls TH2/TH17 cell differentiation. This implies that reducing DC activation could be a new pharmacologic intervention to treat patients with severe asthma who present with TH17-mediated neutrophilic inflammation.


Subject(s)
Asthma/metabolism , Cell Differentiation/immunology , Dendritic Cells/immunology , Lung/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , Allergens/immunology , Animals , Cytokines/immunology , Eosinophils/immunology , Female , Inflammation/immunology , Inflammation Mediators/immunology , Mice , Mice, Inbred C57BL , Myeloid Cells/immunology , Neutrophils/immunology , Pyroglyphidae/immunology , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...